3.270 \(\int \frac{1}{\sqrt{b x^2+c x^4}} \, dx\)

Optimal. Leaf size=30 \[ -\frac{\tanh ^{-1}\left (\frac{\sqrt{b} x}{\sqrt{b x^2+c x^4}}\right )}{\sqrt{b}} \]

[Out]

-(ArcTanh[(Sqrt[b]*x)/Sqrt[b*x^2 + c*x^4]]/Sqrt[b])

________________________________________________________________________________________

Rubi [A]  time = 0.0089355, antiderivative size = 30, normalized size of antiderivative = 1., number of steps used = 2, number of rules used = 2, integrand size = 15, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.133, Rules used = {2008, 206} \[ -\frac{\tanh ^{-1}\left (\frac{\sqrt{b} x}{\sqrt{b x^2+c x^4}}\right )}{\sqrt{b}} \]

Antiderivative was successfully verified.

[In]

Int[1/Sqrt[b*x^2 + c*x^4],x]

[Out]

-(ArcTanh[(Sqrt[b]*x)/Sqrt[b*x^2 + c*x^4]]/Sqrt[b])

Rule 2008

Int[1/Sqrt[(a_.)*(x_)^2 + (b_.)*(x_)^(n_.)], x_Symbol] :> Dist[2/(2 - n), Subst[Int[1/(1 - a*x^2), x], x, x/Sq
rt[a*x^2 + b*x^n]], x] /; FreeQ[{a, b, n}, x] && NeQ[n, 2]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{1}{\sqrt{b x^2+c x^4}} \, dx &=-\operatorname{Subst}\left (\int \frac{1}{1-b x^2} \, dx,x,\frac{x}{\sqrt{b x^2+c x^4}}\right )\\ &=-\frac{\tanh ^{-1}\left (\frac{\sqrt{b} x}{\sqrt{b x^2+c x^4}}\right )}{\sqrt{b}}\\ \end{align*}

Mathematica [A]  time = 0.009542, size = 52, normalized size = 1.73 \[ -\frac{x \sqrt{b+c x^2} \tanh ^{-1}\left (\frac{\sqrt{b+c x^2}}{\sqrt{b}}\right )}{\sqrt{b} \sqrt{x^2 \left (b+c x^2\right )}} \]

Antiderivative was successfully verified.

[In]

Integrate[1/Sqrt[b*x^2 + c*x^4],x]

[Out]

-((x*Sqrt[b + c*x^2]*ArcTanh[Sqrt[b + c*x^2]/Sqrt[b]])/(Sqrt[b]*Sqrt[x^2*(b + c*x^2)]))

________________________________________________________________________________________

Maple [B]  time = 0.043, size = 50, normalized size = 1.7 \begin{align*} -{x\sqrt{c{x}^{2}+b}\ln \left ( 2\,{\frac{\sqrt{b}\sqrt{c{x}^{2}+b}+b}{x}} \right ){\frac{1}{\sqrt{c{x}^{4}+b{x}^{2}}}}{\frac{1}{\sqrt{b}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(c*x^4+b*x^2)^(1/2),x)

[Out]

-1/(c*x^4+b*x^2)^(1/2)*x*(c*x^2+b)^(1/2)/b^(1/2)*ln(2*(b^(1/2)*(c*x^2+b)^(1/2)+b)/x)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{\sqrt{c x^{4} + b x^{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(c*x^4+b*x^2)^(1/2),x, algorithm="maxima")

[Out]

integrate(1/sqrt(c*x^4 + b*x^2), x)

________________________________________________________________________________________

Fricas [A]  time = 1.42514, size = 186, normalized size = 6.2 \begin{align*} \left [\frac{\log \left (-\frac{c x^{3} + 2 \, b x - 2 \, \sqrt{c x^{4} + b x^{2}} \sqrt{b}}{x^{3}}\right )}{2 \, \sqrt{b}}, \frac{\sqrt{-b} \arctan \left (\frac{\sqrt{c x^{4} + b x^{2}} \sqrt{-b}}{c x^{3} + b x}\right )}{b}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(c*x^4+b*x^2)^(1/2),x, algorithm="fricas")

[Out]

[1/2*log(-(c*x^3 + 2*b*x - 2*sqrt(c*x^4 + b*x^2)*sqrt(b))/x^3)/sqrt(b), sqrt(-b)*arctan(sqrt(c*x^4 + b*x^2)*sq
rt(-b)/(c*x^3 + b*x))/b]

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{\sqrt{b x^{2} + c x^{4}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(c*x**4+b*x**2)**(1/2),x)

[Out]

Integral(1/sqrt(b*x**2 + c*x**4), x)

________________________________________________________________________________________

Giac [A]  time = 1.16131, size = 62, normalized size = 2.07 \begin{align*} -\frac{\arctan \left (\frac{\sqrt{b}}{\sqrt{-b}}\right ) \mathrm{sgn}\left (x\right )}{\sqrt{-b}} + \frac{\arctan \left (\frac{\sqrt{c x^{2} + b}}{\sqrt{-b}}\right )}{\sqrt{-b} \mathrm{sgn}\left (x\right )} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(c*x^4+b*x^2)^(1/2),x, algorithm="giac")

[Out]

-arctan(sqrt(b)/sqrt(-b))*sgn(x)/sqrt(-b) + arctan(sqrt(c*x^2 + b)/sqrt(-b))/(sqrt(-b)*sgn(x))